Source code for spsklearn.utils.validation
import numpy as np
from sklearn.preprocessing import normalize
[docs]
def check_spherical_array(array, spherical_axis=1):
_, array_norms = normalize(array, norm='l2', axis=spherical_axis, return_norm=True)
if not np.allclose(array_norms, 1.0):
raise ValueError(
"Array should be L2-normalized to 1 among axis={:d}, but got max_norm = {:.5f}"
" and min_norm = {:.5f}.".format(
spherical_axis,
np.max(array_norms),
np.min(array_norms))
)